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In this paper we consider statistical problems arising from applications concerning insurance-
premium calculation. We describe an integrated set of Bayesian tools for modelling premi-
ums systems using the local approach. In this article the local approach is broadly defined,
ranging from differentiation of functions to differentiation of functionals, reviewing some
of the basic formulations for local assessment of prior influence. We then discuss the use
of the local analysis to study sensitivity concerning insurance-premium calculation.
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1 Introduction

Questions concerning robustness are very common in statistical analysis. We need to know
how strongly the answer coming out depends on the elements going in. For a bayesian
analysis these elements are the data, the model, the prior and the loss function. The
output might be the posterior distribution. The study of robustness try to answer how
sensitive is the output to the input. In this paper we focus on prior influence; we will
study the rate of change of the posterior distribution with respect to infinitesimal changes
in the prior distribution. The local sensitivity analysis consists of the use of differential
calculus to asses sensitivity. Furthermore, local sensitivity can be useful when we want
to compare the sensitivity of several posterior quantities of interest.

The most commonly premium principles consists of assuming that the individual risk
for the number of claims has a given distribution depending on a parameter § € ©

which is distributed according to a prior distribution 7 (#). Assuming that the risks are



independent we can compute the premium using the expression
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where 7§ is the posterior distribution of 7y after observing the data k and g(f), and h(f)
are appropriate functions whose expectations under 7, exist.

Heilmann (1988) derives premium principles using decision theory under loss function
in the form L(k,P) = g(k)[h(k) — h(P)]?. From different types of functions for g(k) and
h(k), many premium principles using decision theory and hence diverse risk premiums
can be obtained. For example for g(k) = k and h(k) = 1 we obtain the net premium
principle (Eichenauer et al. 1988; Gémez et al.2002; Heilmann, 1989 and Lemaire, 1995;
among others) and for g(k) = k? and h(k) = k the variance principle ( Heilmann, 1989;
Lemaire, 1995 and Gomez et al.2002 among others).

The risk premium, P(#), is usually obtained by minimizing E ) [L(k, P(6))] applying
the same loss function as that used to obtain the Bayes premium, where f(k | ) is the
probability density function of claims.

The paper is organized as follows. In Section 2, we define some previous results, here
the Fréchet Derivative of functionals and some features of a size functional are introduced.
In Section 3, we comment on the study of local robustness, we will study the Fréchet
derivative of the quotient of posterior expectations by using an expression of the difference
of the quotients of posterior expectation. In section 4, we discuss the interpretation of
the norm of the derivatives. In section 5, we compute some numerical illustrations based
on a Poisson—-Gamma model. Finally, in section 6 we will comment on conclusions and

future studies with relation to this subject.

2 Previous results

Robustness of the prior distribution is considered in this section. The rate of change in the
inference with respect to change in the prior; this topic is known as local or infinitesimal
robustness.

Consider a measure space (0O, B, ). Let my be a probability density with respect to
(0, B, 11), which induces a probability measure IIy. A simple way of incorporating the
Bayesian local study in a parametric model for the sample space K and the parameter
space © C R, {f(k | #),6 € ©}, is through a prior distribution 7(#) for the parameter 0
such that I' = {7 : 7 = my + u}, where u is a signed measure with u(0) = 0 with ©,.

When the signed measure u is in the form u = (¢ — m) with ¢ € Q, € € [0, 1] we have
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the well known e—contaminated class (Martin et al. (2003), Gustafson (1996) and Gémez
et al. (2002); among others). Observe that the perturbation on my is linear.

To assess sensitivity we can quantify the worst case of sensitivity by computing the
norm of (1) when 7 is replaced by 7 € T'. This can be interpreted as the maximum change
of the quotient of posterior expectations to prior discrepancy. The question now is how
to quantify the magnitude of the discrepancy or perturbation. Gustafson (1996) proposes
to use the size of u which is given by size (u) = |lu/mo; Il = (fo (u/mo)” dHO)l/p, if
p < oo and size (u) = [Ju/mo; ||, = esssupg u/m, if p = oo, being p € [0,1], ¢ € [0,1]
the solution to p+ ¢ = pg. The size is chosen in this form because (see Gustafson (1996))
satisfies the following desirable axioms: 1) The size is a norm; 2) The size is invariant
under a change of dominating measure; 3) The size is invariant under transformation; and
4) The size is finite, which guarantees that 7 is integrable.

Now we can choose I for ¢ > 0 in the following form
['={m: ||u/m; Uo||,, < c},

the class of all limited perturbations of .

Local robustness uses differential calculus to assess sensitivity. Then if P(m) is per-
turbed by wu, then it is natural to use P(u) to quantify prior influence. To do this we
will compute the norm of the Fréchet derivative of P(u) with respect to the prior (Milne
(1980), Diaconis and Freedman (1986), Gustafson (1996) and Martin et al. (2003), among
others).

Consider an operator P : Y — V where U and V are normed vector spaces, L(U, V)
the space of bounded linear transformations & — V and some open subset D(T") of U.
The following definition of the Fréchet derivative appears in Milne (1980).

Definition 1. An operator P : U — V is Fréchet differentiable at x € D(T) C U if there

exists a continuous linear operator P(x) € LU, V) satisfying

[P (u1 + u2) = Plur) — Plur)uslly = of[[uzlu)
The operator P(ul) 18 called the Fréchet or strong derivative of P at u;.

The norm of a Fréchet derivative is given by

H,P(Ul)UQ H,P(UI)U2
= sup = sup —— % = sup
w20 ||Uzlly i<t 1u2lly lfua||=1

o P

To end this section we can remember, because it will be useful later, the well known
result in functional analysis that for any map I from Q to R we can write I = [T — I~
and |I| = I'" + I~, where It = max(/,0) and I~ = max(—1,0)
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3 Local robustness study

The first element for an analysis of sensitivity to the prior is a framework for considering
deviations from the base prior. We will consider a framework that uses additive or linear
contaminations of the prior.

We will consider from now on, a parameter space © C R for which (0,3, u) is a
measure space where p is Lebesgue measure. Let 7y be a probability density with respect
to © C R inducing a probability measure Ily; 7 is referred to as the base prior.

A straightforward way to construct densities close to 7 is by perturbation, and the most

common form of perturbation is linear. The result of perturbation is denoted by:

() = mo(0) + u(6)

Consider observance of data x giving rise to likelihood function f(x | ). The functions
of the parameter that are of inferential interest are denoted as g(6) and h(#).
Let T' = {m : [[u/mo; ||, < c}, and V = R. We will adopt [[u/mo; Io||, as the norm on U
and the absolute value as the norm on R.

Let the mapping P(u) : © — R be the quotient of posterior expectations of measur-

able functions ¢ and h :

| s@x®11 1000,
Plu) = 1 -t @)
/@ WO (O)f (x| O)dp(e) 7

Let P(ug)u the operator Fréchet derivative of P(u) at ug in the direction u.The next

theorem compute the derivative of (2)

Theorem 1. Suppose that gf and hf are bounded. Then

- 1 NS,
Proof .-
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The second term of the last expression can be rewritten as

Nu(NgNz, — NyN%,)
R — 5 0 0
(N%,)" (NE, + NE)
It only remains to show that ||R|| — 0

So we can obtain

1 g N2
P(mo +u) — P(mp) =~ N—#O <Nu — N—Q()N“>
I < el e = T
70 u 0 o
N e M
N+ NI,

We may bound the last inequality since hf and gf are bounded
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Since Cr, is a constant depending on 7
122]| < o(mo)

if w — 0 then ||R|| — 0.
|
Using different types of functions for g(f) and h(#) we can obtain different expressions
for the quotient of posterior expectations. For example, for g(f) = 6 and h(f) = 1 we get
the net premium principle and for g(f) = 0% and h(f) = 0 the variance principle.

We will prove now, that we may interchange in expression (3) the direction u by the
direction ;‘—O
Proposition 1. P(ug)u = P(uo):—o where N& = /( )f(x | 0) dHO

Proof.- The result follows immediately of Theorem 1 by interchanging in expression (3) u
and du(0) by = and dIly(0)
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4 Computing the norm of the derivative

The norm of the derivative at 0 is of special interest. The norm is the maximum rate of
change of the quotient of posterior expectations relative to the prior, as the prior is locally
perturbed away from the single prior my. The following corollary allows us to compute

the norm.

Corollary 1.

[PO) = sw [P = s [PO)E (4)
P fusnll,=1 P
Proof.- Clearly holds using Proposition 1.
Lemma 1. Let E} [9(0)] = p, and EZ [h(0)] = pn then P(up)u = pi [/ I(Q)u(ﬁ)du(&)}
h LJe
where 0
Py \ T
1(0) = 0) — h(0)—= | —==

Proof.- Let the mapping P(u) : © — R be the quotient of posterior expectations of

measurable functions g and A :

| @m0,
Plu) = L0 = o (5)
/@ h(O)mo(0)f (x| O)dpu(o) 7o

We can write the derivative of (5) as follows
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The expression i[ (0) is called influence function.

Finally, we have the main result of this paper, which give us the norm of the quotient

)

Proof.- Since this theorem may be considered a generalization of the result 10 in Gustafson
(1996a), the proof is omitted.

of posterior expectations.

Theorem 2.

1
—I_;HO

HP(O) Ph

—I+;H0

‘ 1
= max
P

Ph

b

q

which p,q such that p+ q = pq.

Corollary 2. If q is odd and h(0) = 1, then

o

Proof.- It is obvious using Theorem 2. O

5 Numerical Tlustration

We assume that the individual risk for the number of claims has a Poisson-type distribu-
tion and its mean is distributed as a prior distribution. We will consider a group in which
the claim proneness of a risk is represented by a risk parameter §. We assume that the
risks are independent, so we take a risk # and a assume that the number of claims for each
policy holder fits a Poisson distribution with mean 6 > 0, f(k|0) = e 0% /k!, k= 0,1, ...,
whose parameter 6 varies from one individual to another, reflecting the individual s claim
propensity, § = E(K ). This parameter is assumed to be a random variable and to follow
a structure function 7o (6).

Consider a policyholder, drawn randomly from the insurance portfolio, who is ob-
served to have the sequence of claims ki, ko, ..., k; over t periods. We assume these to
be independent and equally distributed. Assuming k = (kq, ko, ..., k;) the Bayes premium
is defined (Heilmann, 1989) as the real number P(k) minimizing the posterior expected
loss Ery k) [L(P(6), P(k)],i.e., the posterior expected loss sustained by a practitioner who

takes action P(k) in stead of P(#), the risk premium, which is unknown.
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In this paper, we will consider as prior distribution a Gamma distribution. In this
case, by combining the likelihood function with the prior distribution, G(a,b), m(0) =
be9+-1e=% /T'(a), a > 0,b > 0, the posterior distribution remains a Gamma distribution
with the updated parameters G(a + k, b+ t).

In order to show the local robustness of this model we have chosen car insurance data
which appear in Biihlmann (1970,pp.107). The data refers to the number of claims made
in one year.

We have used the maximum likelihood method to estimate the parameter of the prior
distribution. We have obtained these results ¢ = 0.766595 and b = 3.40513, and taking
into account the well known result that the predictive distribution is a Negative Binomial
distribution with parameters a and b/(b + 1).

We have plotted the influence functions in Figures 1, 2 and 3 for values of t = 1,5, 10
respectively. Every Figure displays six plots, one for each value of k = 1,2,3,4,5,6 from

left to right and from up to down.
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Figure 1: Influence functions for t=1

All the functions take on a similar shape as a function of the periods and the number
of claims, but exhibit a stronger dependence on the parameter #. The influence function
is asymptotically diminishing with larger values of the parameter.

In Figures 4, 5 and 6, we have plotted the norms of the derivatives of the premiums.
In our case , the norms of the derivatives for p = 2,00 have been computed by one-
dimensional numerical integration and for p = 1 we have used maximization to calculate
the norms of the derivatives.

In all cases, that is, for each value of p, we observe lack of robustness when the average



number of claims increases. We have obtained the most robust results when £ = 0. We

can also observe that the increase of the norm is weaker when p = oo and ¢ = 1.

Figure 2: Influence functions for t=5
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Figure 3: Influence functions for t=10
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Figure 4: Norm of the derivative for p=1,¢ =occ and t = 1,5, 10
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Figure 5: Norm of the derivative for p=2,¢g=2and t =1,5,10
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Figure 6: Norm of the derivative for p =o00,q =1 and t = 1,5, 10
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6 Conclusions and extensions

The aim of this paper is to illustrate notions and techniques of Bayesian local robustness
in the context of problems that arise in Actuarial Science. Due to this procedure, new
results were obtained.

Assuming that it is really difficult to quantify an expert’s priori opinion in a single
prior distribution, we suggest to measure the changes in the premium under infinitesi-
mal changes in the prior. We have combined the tools of standard and local Bayesian
robustness in order to show how the choice of the prior can have a crucial effect on the
premium.

We believe that a prior distribution giving more weight to the region where the sample
size is in conflict with the prior mean is necessary. This can be done, for example, by
using a prior which can be built as a convex sum of two or more distributions.

The present study leaves some aspects open to question, which could be the subject
of future study. First, the consideration of the exponential principle (Heilmann, 1989)
allows the practitioner to choose the parameter which characterizes the risk aversion of
the insurer. By using different values of this parameter, we probably may reduce the value
of the norms. But new results are required to work with this premium principle. Second,
since in Actuarial Science the mean and the mode are natural concepts, an actuary who has
a good statistical training should not have any problem in assessing these characteristics
on the risk parameter and its numerical values, based in his experience. The mode is
impossible to incorporate to the problem treated in this paper, at least by now; conditions
on moments can be possible using the methodology of Betro et al. (1996) and Moreno et
al. (2003). Third, linear perturbations on the prior have been treated in this paper, but

non linear perturbations are possible, in the line of the work of Gustafson (1996).
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