
A new test for chaotic dynamics using lyapunov exponents 
  

Revised version: March 2004 
 
 
 
 
 

Fernando Fernández-Rodríguez 
Departamento de Métodos Cuantitativos en Economía y Gestión 

Universidad de Las Palmas de Gran Canaria  
correo-e: ffernandez@dmc.ulpgc.es 

 
Simón Sosvilla-Rivero 

FEDEA y Universidad de Complutense de Madrid 
correo-e: simon.sosvilla@fedea.es 

 
Julián Andrada-Félix 

Departamento de Métodos Cuantitativos en Economía y Gestión 
Universidad de Las Palmas de Gran Canaria  

correo-e: jandrada@dmc.ulpgc.es 
 

 
 

Corresponding autor: 
 
Dr. Julián Andrada-Félix 
Departamento de Métodos Cuantitativos en Economía y Gestión 
Facultad de Ciencias Económicas y Empresariales 
Universidad de Las Palmas de Gran Canaria  
Campus Universitario de Tafira Módulo D, despacho D-4.14  
35017- Las Palmas de Gran Canaria 
Tel: (+34) 928 458 959 Fax: (+34) 928 458 225 
e-mail: jandrada@dmc.ulpgc.es 

 
 
 

ABSTRACT 
 

We propose a new test to detect chaotic dynamics, based on the stability of the largest 
Lyapunov exponent from different sample sizes. This test is applied to the data used in the 
single-blind controlled competition tests for non-linearity and chaos that were generated by 
Barnett et al. (1997), as well as to several other chaotic series. The results suggest that the 
new test is particularly effective when compared to other stochastic alternatives (both linear 
and nonlinear). The test size is one for large samples, although for small sample sizes it 
diminishes below the nominal size for two out of the three chaotic processes considered.  
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1. Introduction 
 

In a dissipative dynamical system, the existence of a positive Lyapunov exponent is 
usually taken as an indication of the chaotic character of the system. Lyapunov exponents 
provide information on the intrinsic instability of the trajectories of the system, and are 
computed as the average rate of exponential convergence or divergence of trajectories that are 
near each other in the phase space. 

 
In recent years, there has been a burgeoning literature on the calculation of Lyapunov 

exponents for an unknown dynamical system reconstructed from a single time series. The 
seminal paper of Wolf et al. (1985) provides an algorithm to compute Lyapunov exponents in 
empirical applications, but this is sensitive to both the number of observations and the degree 
of noise in the data. More recently, however, some authors have proposed new methods for 
estimating Lyapunov exponents that perform well even for small samples [see, among others, 
Dechert and Gençay (1992), Abarbanel et al. (1991, 1992), and Rosenstein et al. (1993)]. 

 
There are many papers that use Lyapunov exponents to detect chaotic dynamics in 

financial time series, especially in exchange rate series. Early examples of research in this 
area include Bajo-Rubio et al. (1992) and Dechert and Gençay (1992), where Lyapunov 
exponents are used to distinguish between linear, deterministic processes (with negative 
Lyapunov exponents) and non-linear, chaotic deterministic processes (where the largest 
Lyapunov exponent is positive). These and other papers have been criticised for the absence 
of a distributional theory providing a statistical framework for hypothesis testing using the 
Lyapunov exponents that are calculated. In this sense, Gençay (1996) presents a methodology 
to compute the empirical distributions of Lyapunov exponents using a blockwise bootstrap 
technique. This methodology provides a formal test of the hypothesis that the largest 
Lyapunov exponent equals some hypothesised value, and can be used to test for chaotic 
dynamics. The test proposed by Gençay (1996) is particularly useful in those cases where the 
largest Lyapunov exponent is positive, but very close to zero. More recently, Bask and 
Gençay (1998) use the same statistical framework to provide a test for the presence of a 
positive Lyapunov exponent in atime series used. The numerical examples show that both the 
Gençay (1996) and the Bask and Gençay (1998) test statistics behave well for small samples. 
These papers have been very influential from an empirical point of view and, for example, 
Bask (1998), using the test suggested by Bask and Gençay (1998), finds evidence that some 
exchange rates can be characterised by deterministic chaos. 

 
Despite the growing interest in the econometric literature aimed at distinguishing 

between non-linear deterministic processes and non-linear stochastic processes, there remain 
important disagreements and controversy about the results. A key paper in this area is Barnett 
et al. (1997), where some data series were simulated from different generating models in 
order to evaluate the behaviour, both for large and small samples, of five highly regarded tests 
for non-linearity or chaos. The tests considered in that paper are the Hinich bispectral test 
(Hinich, 1982), the BDS test (Brock et al., 1996), the NEGM test (Nychka et al., 1992), the 
White test (White, 1989), and the Kaplan test (Kaplan, 1994). The results concerning the 
power function of some of these tests proved to be rather surprising, since none of them had 
the ability to isolate the origins of the non-linearity or chaos to within the structure of the 
economy. 

 
 



The aim of this paper is to propose a new test for the presence of chaos, based on the 
behaviour of the estimated Lyapunov exponents, for different sample sizes. As we shall try to 
illustrate, while the largest exponent of a chaotic process is more or less stable with respect to 
sample size (it displays stationary behaviour when the sample size increases), the largest 
Lyapunov exponent of a stochastic process is not. Therefore, we suggest testing chaotic 
dynamics by estimating the empirical distributions of the largest Lyapunov exponents for 
different sample sizes and comparing their means. The proposed new test proves to be very 
effective when compared to stochastic processes, hence providing further refinement over 
those of Gençay (1996) and Bask and Gençay (1998). 

 
The rest of the paper is organised as follows. Section 2 presents the statistical 

framework used in the paper. Section 3 discusses the stability of the largest Lyapunov 
exponent with respect to sample size. Section 4 proposes the new test for distinguishing chaos 
from random behaviour. Section 5 reports the results of applying our test to several chaotic 
processes, as well as to the simulated data used in the single-blind controlled competition tests 
performed by Barnett et al. (1997). On the other hand we have also tested for chaos in several 
exchange rate time series. Finally, Section 6 provides some concluding remarks. 
 
 
2. A statistical framework for testing chaotic dynamics via Lyapunov exponents 

 
In order to examine the properties of a deterministic dynamical system we make use of 

ergodic theory, since it provides a statistical framework where different degrees of the 
complexity of attractors and motions can be distinguished [see Eckmann and Ruelle (1985) 
for a survey]. Furthermore, ergodic theory allows us to describe the time averages of a 
dynamical system and to consider when transients become irrelevant. Once transients are 
completed, the motion of the dynamical system typically settles near a subset of ℜ , called an 
attractor. In the particular case of dissipative systems, where the phase-space volumes are 
concentrated by time evolution, the volume occupied by the attractor is in general very small 
in relation to the phase space. Even if a system’s volume contracts, it does not mean that its 
length is contracted in all directions: some directions may be stretched and some directions 
contracted. This implies that, even in a dissipative system, the final motions may be unstable 
within the attractor. This instability usually manifests itself in sensitive dependence on initial 
conditions, which means an exponential separation of orbits (as time goes on) of points that 
were initially very close each other on the attractor. In this case, we say that the attractor is a 
strange attractor and that the system is chaotic. 

n

 
In ergodic theory, statistical averages can be computed either in terms of time averages 

or space averages. Let us consider, for simplicity, a discrete dynamical system of dimension 
n, 1 ( )t tx F x+ =

GG G , where nn:F ℜ→ℜ
G  is a differentiable vectorial function. The time average of 

a function ϕ  along a (forward) trajectory ixG  with initial condition 0xG , of a discrete dynamical 
system is defined by 
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In a similar way for a continuous flow tφ , arising from a continuous dynamical system 

( ),dx F x
dt

=
G G G the time average of a function along a (forward) trajectory is 
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Time averages often depend on initial conditions. However, when the dynamical 

system has an attractor, all trajectories have the same statistical properties. 
 
A measure of complexity in chaotic motion may be obtained by analysing the 

sensitivity of the dynamical behaviour to the initial conditions given by two infinitely close 
initial states. For chaotic systems, points in a common neighbourhood in the phase space 
separate exponentially with time. Let us illustrate the basic idea by means of a discrete 
dynamical system of dimension n, 1 ( )t tx F x+ =

GG G . In order to examine the stability of the 
trajectories of the system, let us consider how the system amplifies a small difference between 
the initial conditions 0xG  and 0x′G : 
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By the chain rule, we have 
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In this context, the Lyapunov exponents are defined as follows (Guckenheimer and 

Holmes, 1990): Let us consider the family of subspaces )n(
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Then, the real numbers jλ  are called the Lyapunov exponents of F

G
at 0xG . Lyapunov 

exponents offer information on how orbits on the attractor move apart (or together) given the 
dynamic evolution of the system. One can also define them by the rate of stretching or 
shrinking of line segments, areas, and various dimensional sub-volumes in the phase space. 
Line segments grow or shrink by a factor of , areas by a factor of 1te λ )2(te

......

1 λλ +

2+

 and so forth. If 
one or more of the Lyapunov exponents are positive, then we have chaos in the motion of the 
system. The sum of the Lyapunov exponents is negative ( 0n1 <++ λλλ ) for 
dissipative systems [see Abarbanel (1996)]. 

 
The possibility of obtaining, in a deterministic dynamical system, Lyapunov exponents 

that are representative of short-run divergences in trajectories with many closed initial points 
is based on Oseledec’s (1968) multiplicative ergodic theorem. If we assume that there exists 
an ergodic measure of the system, this theorem justifies the use of arbitrary phase space 



directions when calculating the largest Lyapunov exponent. In this case, the Lyapunov 
exponents have a mean in a global sense, allowing the complexity of a deterministic 
dynamical system of dimension n to be characterised simply by n real numbers. 

 
Oseledec’s (1968) multiplicative ergodic theorem states that, under quite general 

conditions on the function F
G , the limit of expression (3) does exist for almost all 0xG  (with 

respect to the invariant measure µ ) and is independent of the initial condition 0xG  considered 
(except for a set of null measure). Therefore, the multiplicative ergodic theorem implies that 
the Lyapunov exponents are invariant numbers representing “globally” the complexity of the 
dynamical system under study, independently of the initial condition considered. In this sense 
it is also important to point out that Gençay and Dechert (1992), Gençay and Dechert (1996) 
and Dechert and Gençay (2000), have studied the topological invariance of the Lyapunov 
exponent estimator from the observed dynamics. 

 
Oseledec’s theorem is based on the ergodic theory of deterministic dynamical systems 

and justifies the use of arbitrary phase space directions when calculating the largest Lyapunov 
exponents. Nevertheless, as both Whang and Linton (1999) and Tong (1990) point out, 
Lyapunov exponents can be interpreted within the standard non-linear time series framework 
as a measure of local stability and is of interest even without any direct connection with 
deterministic chaos. 

 
There are several suitable estimation methods to obtain Lyapunov exponents based on 

kernels, nearest neighbours, splines, local polynomials and neural nets [see Härdle and Linton 
(1994) for a general discussion]. McCaffrey et al. (1992) distinguish two classes of methods 
for estimating the largest Lyapunov exponent maxλ : (i) Direct methods like Wolf et al. (1985) 
or Rosenstein et al. (1993), which assume that the initial divergence ( x0 0x )′−

G G  grows at the 
exponential rate given by maxλ  in the reconstructed state space of a time series ; and (ii) 
Jacobian methods, where data are used to estimate the Jacobians from an estimation of the 
conditional expectation of the process, which allows maxλ  to be estimated. Examples of 
Jacobian methods are those proposed by MacCaffrey et al. (1992), Nychka et al. (1992) or 
Gençay (1996). Although both conceptions (direct and Jacobian methods) agree with respect 
to the conception of estimated Lyapunov exponents for chaotic nonlinear deterministic 
processes, their approach to the Lyapunov exponents of stochastic processes are extremely 
different.  

On one hand, direct methods act directly on the time series to estimate maxλ  and are 
not intended, ex ante, to separate the effect of the random variables into the series. Direct 
methods are based on the philosophy that chaos provides a link between determinism and 
randomness; in this view the dimension and maxλ  of IID noise, in theory, is infinite, and if the 
deterministic definition of the Lyapunov exponents is taken literally, the Lyapunov exponents 
are also infinite in presence of noise. Schuster (1996, p. 112) or Eubank and Farmer (1990, p. 
160) support this conception where the maxλ  of stochastic processes will, necessarily, be  
positive  because of the infinite dimensionality of the noise. 

On the other hand, in order to estimate the Lyapunov exponents in stochastic 
processes, Jacobian methods use nonparametric regression tools (Kernels, neural networks, 
etc.) trying to isolate the deterministic conditional mean of the process and estimate the 
derivatives in order to reconstruct the Jacobian. In this conception stochastic processes may 
have a negative maxλ , for instance stationary linear autoregressions have , while for maxλ 0<



unit root process maxλ 0=  and only for explosive linear autoregressions do we get   
(See Whang and Linton (1999), p. 5) . 
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Therefore, within the theory of dynamical systems, a chaotic system is characterised 

by globally bounded trajectories in the phase space with a positive largest Lyapunov 
exponent, while in the frame of direct methods to estimate maxλ , the largest Lyapunov 
exponent of a white noise process is (in theory) infinite [see Schuster (1996) or Eubank and 
Farmer (1990)].   

 
Nevertheless, in practical implementations, using finite time series, any standard 

algorithm for calculating the largest Lyapunov exponent, with direct methods, will find a 
finite positive value for this exponent, for any random process. Therefore, the largest 
Lyapunov exponent on its own is not able to distinguish between a chaotic, non-linear 
deterministic process and a random process. This problem is especially relevant in financial 
time series, where non-linear stochastic processes, such as GARCH processes, are usually 
postulated as alternative models to the chaotic behaviour [see, e. g., Hsieh (1991)]. 

Gençay (1996) proposed a statistical framework for testing chaotic dynamics using a 
moving blocks bootstrap procedure. 

Consider a sequence of weakly dependent stationary random variables 
{ }1 2X , X , ..., X , and let { }1 2 Nx , x , ..., x  be a time series realisation of this stochastic 
process. According to Künsch (1989) and Liu and Singh (1992), the distribution of certain 
estimators of interest can be consistently constructed by applying a moving blockwise 
bootstrap. Let }+ + −t 1 t d 1, ..., x

+d 1
, x

≤ −
 denote a moving block of d consecutive 

observations, where t N . For a time series of N elements, we can form a set 
{ }− +

d d
1 NB , ... ,B  of blocks with length d. Let ( )k=int N/d  [where int() denotes the integer 

part], so that by sampling with replacement of k blocks denoted by { }d
i1

B , .... ,B  we will 

form the bootstrap sample. 
 
In order to obtain the sample distribution of the largest Lyapunov exponent , we 

will repeat this procedure to construct a sequence of sub-families of k blocks taken with 
replacement from the family of d-dimensional blocks { }− +

d d
1 N dB , ... ,B 1  that can be generated 

with the time series { }1 2 N, x , ..., x . For each sub-family of k blocks, we can apply some 
standard procedure to compute the largest Lyapunov exponent max

~λ  by taking the pairs of 
nearest neighbours from each sub-family of blocks. Repeating this process a large number of 
times, we will obtain the empirical distribution of the largest Lyapunov exponent max

~λ . 
At this point it is important to observe the difficulty of Jacobian methods for 

estimating maxλ  within the framework of bootstrap replications. As Ziehmann et al. (1999) 
pointed out, a bootstrap algorithm must be used with caution if Lyapunov exponent estimates 
rely on the product of matrices because matrix multiplication does not commute, except in 
one dimension. In order to avoid such complications with the product of Jacobians along the 
trajectory, we use a simple direct method for estimating the largest Lyapunov exponent  
of a time series proposed by Rosenstein et al. (1993). Given that the divergence between the 
nearest neighbours takes place at a rate approximated by the largest Lyapunov exponent, 
Rosenstein et al. suggest the choice of a pair of neighbours as initial conditions for different 



trajectories, and to estimate maxλ  by averaging the exponential divergences of these initially 
close state-space trajectories. 

i ) d

 
Rosenstein’s method may be outlined as follows. Let us consider an observed time 

series { }1 2 Nx , x , ..., x . Following Takens’ (1981) theorem, we start by reconstructing the 

phase-space vector using the blocks {  defined above, where },...., 11
d

dN
d BB +−

{ }+t t t 1 tx , x , ..., x +=d
dB −1

B

. For each point , we search for the nearest neighbour point  
in the reconstructed phase space that minimises the distance to that reference point:  

d
tB d

tB *
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B
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where ...  denotes the Euclidian norm. To consider each pair of neighbours as initial 
conditions for different trajectories, the temporal separation between them should be greater 
than the mean period of the time series:  
  

periodmeantt >− || *  
This mean period can be estimated as the reciprocal of the mean frequency of the power 
spectrum of the time series under study. 
 

The divergence between the nearest neighbours  and  takes place at a rate 
approximated by the largest Lyapunov exponent:  

d
tB d

tB *

 
0 1t t maxd ( ( ) exp( i t ) for i ,.....,Tλ ∆≅ =         (1) 

where i is the number of discrete-time steps following the nearest neighbour,  is the 
sampling period of the time series, and  is the distance between the jth pair of nearest 
neighbours after  discrete time steps. (Recall that i

t∆
)(id j

i t∆  corresponds to seconds so that 
Lyapunov exponents are expressed in bits/second). Taking the logarithm of both sides of this 
last expression, we obtain: 
 

tidid tt ∆+≅ max))0(log())(log( λ                 (2) 
 
For each value of t between 1 and N-d+1, this equation represents a set of approximately 
parallel lines, each with a slope that is approximately proportional to maxλ . The largest 
Lyapunov exponent is then estimated using a least-square fit with a constant to the average 
line defined by )(log( idt , where  denotes the average value over all values of t. 

There exist several key parameters in the Rosenstein et al. algorithm. Besides the 
embedding dimension (d) (that will be called the moving-block length for the moving blocks 
bootstrap procedure),  we have to select the lag or reconstruction delay, the mean period and 
the number of discrete-time steps (i) allowed for divergence between nearest neighbours  

and  in the phase space. We explain later how to select these parameters following the 
author’s recommendations. 

d
tB

d
tB *

 
 



3. Stability of largest Lyapunov exponents with the sample size for chaotic processes  
 

From a theoretical point of view, the reason for the stability of the largest Lyapunov 
exponent with respect to the sample size can be found in Oseledec’s (1968) theorem, which  
states that for a large enough sample size, these exponents will converge to some stable values 
associated with the complexity of the attractor. 
 

For chaotic time series, Oseledec’s theorem guarantees the possibility of making short-
run forecasts based on the reconstructed phase space. The Lyapunov exponents are nothing 
but a measure (in exponential scale) of the mean forecast errors using the nearest neighbour 
points in the phase space. However, when analysing a time series generated by a non-
deterministic stochastic process, nothing guarantees the stability of the Lyapunov exponents. 
Oseledec’s theorem only affects deterministic processes via ergodic theory. For a stochastic 
process, as the number of observations increases, the variability of the largest Lyapunov 
exponent will increase and, therefore, the largest Lyapunov exponent itself will also increase 
without limit with the sample size. 
 

As we shall see, our simulations show an essential difference between chaotic and 
stochastic processes via Lyapunov exponents. If we want to reconstruct the trajectories of a 
time series in a phase space that is sampled from a stochastic process, there is no guarantee of 
convergence in any algorithm towards the largest Lyapunov exponent, because the Lyapunov 
exponents are not necessarily stable and independent of the initial conditions and sample size. 
For stochastic processes, the algorithm is only able to estimate local Lyapunov exponents. 
Local Lyapunov exponents are a measure of the local stability of the process and may be 
highly dependent on the sample size and the initial conditions. 
 

Our simulations are based on different stochastic and chaotic processes. First of all, 
and following Barnett et al. (1997), let us consider samples of size 380 and 2000 observations 
of the following stochastic models 

 
(i) A GARCH process of the following form: 

t
2/1

tt uhy = , 

where h  is defined by t

1t
2

1tt h8.0y1.01h −− ++= , 

with h 10 =  and . 0y0 =

(ii) A non-linear moving average (NLMA) process: 

2t1ttt uu8.0uy −−+= . 

(iii) An ARCH process of the following form: 

t
2/12

1tt u)y5.01(y −+= , 

with the value of the initial observations set at 0y0 = , and  

(iv) An ARMA model of the form: 

1tt2t1tt u3.0uy15.0y8.0y −−− +++= ,  

with 1y0 =  and . 7.0y1 =

 



With these four stochastic models, the white noise disturbances ut, are sampled 
independently from a standard normal distribution.  

In order to provide further, and stronger, evidence supporting our claim that the 
observed invariance property of the largest Lyapunov exponent holds for all chaotic 
processes, we also consider the chaotic Feigenbaum recursion, the Hénon map and the Lorenz 
attractor: 

 
(v) We have used  a Feigenbaum recursion with parameter 4 where the map is fully 
chaotic, that is : 

t t 1 ty 4 y (1 y− −1 )= − , 
where the initial condition was set at 7.0y0 = . 

(vi) The Hénon (1976) map is described by the following system: 

t1t

t
2
t1t

x3.0y
yx4.11x

=
+−=

+

+  

with the initial conditions 5.0x0 =  and 2.0y0 = . 
(vii) The well-known Lorenz (1963) attractor is the three-dimensional continuous-time 
system: 

x 16( y x )
y x( 45.92 z ) y
z xy 4z

= −
= − −
= −

�
�
�

. 

with the initial conditions 0x 0.2= , 0y 0.4= and 0z 20= . 
 

Lorenz´s system was solved using a straightforward fourth-order Runge-Kutta method, 
resulting a sampling period in the resolution of the system of approximately . 
Considering the average mutual information ) for the signal 

01.0≅∆t
T(I )t(x  obtained after integration 

of the Lorenz´s system, the minimum of this function is at 10=T ; following Abarbanel 
(1996), a time lag 10=τ  was used in order to obtain a series 0(x t )n , 1, ...,n 10.000τ+ =  as 
is usual for the phase reconstruction. The initial point was chosen near the attractor and 
transient points were discarded. 
 

 
We calculated the largest Lyapunov exponent applying the algorithm proposed by 

Rosenstein et al. (1993) to the time series generated by these models for each sample size 
between 200 and 10.000 taking increments of 100 observations (i.e., 200, 300, 400, ...10.000). 
Figure 1 shows the results of estimating the largest Lyapunov exponents  for the 
stochastic models used in Barnett et al. (1997) and for the three new chaotic series 
(Feigenbaum and Hénon maps and Lorenz attractor) for different sample sizes, from 200 to 
10.000 observations, for a moving block of size d=5. Other moving block sizes show similar 
results. 

maxλ̂

[Figure 1] 
 

Given the evidence presented in Figure 1, the existence of a positive largest Lyapunov 
exponent does not imply the presence of chaos in a given time series. However, Figure 1 does 
show an interesting and essential difference between chaotic and stochastic processes. While 
the largest Lyapunov exponent in the deterministic models stabilises (in some cases even 
slightly decreases) as the sample size increases, for all the stochastic processes, the largest 
Lyapunov exponent always increases with the sample size. The stability of  with the maxλ̂



sampling size for chaotic processes, versus the positive relationship for stochastic processes, 
appears to be an essential difference between chaotic and stochastic processes. This difference 
may be explained by Oseledec’s (1968) theorem, which guarantees the stability of in 
chaotic processes, and by the infinite dimensionality of the noise present in stochastic 
processes. This behaviour recalls the well-known process of saturation of the correlation 
dimension in a chaotic time series when the embedding dimension increases. As a matter of 
fact, this is the base of the test proposed by Grassberger and Procaccia (1983) to detect 
deterministic chaos. 

maxλ̂

t∆
∆

01.

 
There exists an important observation with respect to the largest Lyapunov exponent 

estimations obtained in the Lorenz attractor (Figure 1). The numbers that we show in Figure 1 
are not the largest Lyapunov exponents of the Lorenz attractor (for block sizes 5) because it is 
not possible to obtain these numbers without knowing the lag or reconstruction delay  that 
was used when sampling the time series from the continuous system. Observe that without t  
it is impossible to implement the expressions (1) or (2). This lag t∆  is crucial because the 
Lyapunov exponents measure the rate at which system processes create or destroy 
information per time units i  in expressions (1) and (2). So the exponents are expressed in 
bits of information per second. From this point of view, knowledge of the precise time units 
present in the time series is crucial in order to estimate the exact size of the Lyapunov 
exponents. Without this a priori information it is impossible to guess the precise time scale of 
the exponents obtained by Rosenstein et al. algorithm.  

t∆

 
The numbers shown in Figure 1 are only fractions of the largest Lyapunov exponents. 

Observe that in this case maxλ  is estimated through a time series obtained by a fourth-order 
Runge-Kutta method, where the sampling period of integration is of the order . In 
addition, the time series used for estimating  is obtained by sampling the integrated 
trajectory with a time lag of 

0≈∆t
maxλ

10τ = . So the numbers of Figure 1 have to be multiplied by the 

factor 1 10
t∆ τ

≈  in order to get the real scale of the largest Lyapunov exponent in the Lorenz 

system. 
 
 

4. A new test for distinguishing chaos from random behaviour via Lyapunov exponents 
 

In this section, we propose a new test, based on the stability of the largest Lyapunov 
exponent from different sample sizes, to detect chaotic dynamics in time series. As we will 
see, this new test is rather powerful when compared to different stochastic alternatives, both 
linear and non-linear.  
 

This new test has a deterministic process as the null hypothesis, while the alternative 
hypothesis is that of a stochastic process (i. e., high-dimensional chaos), since randomness 
can be viewed as infinite-dimensional chaos. 
 

In order to improve the estimation of the largest Lyapunov exponents and following 
Hastie et al. (2001), we will use a procedure known as “bagging” that is based on averaging 
bootstrap samples. Bootstrap aggregation or bagging, averages the estimations over a 
collection of bootstrap samples, thereby reducing the variance. Bagging can dramatically 
reduce the variance of unstable procedures, leading to improved estimations because 
averaging reduces variance and leaves bias unchanged, which will often decrease mean 



squared error. Given this, assume a time series of length N, { }1 2 Nx ,x ,.....,x . Let us divide the 
time series into different sub-samples, each one of which contains the precedent 
{ }1 2 T T T T N1 2 r 1 r

x ,x , ,x , ,x , ,x , ,x x
−

=… … … … , and consider an empirical distribution of the 

largest Lyapunov exponent from 100 moving block bootstraps of this time series for the 
different sub-samples { }1 2 Ti

x ,x , ,x… , for i=1, .  Therefore, our estimation of the 

dominant Lyapunov exponent for sample size T

,r…

i will be max i(T )λ , that is, the mean of the 
distributions of the 100 largest Lyapunov exponents computed from those sample sizes T , 
which corresponds to the bootstrap aggregation or bagging of 100 bootstrap samples of the 
largest Lyapunov exponents. 

i

 
 Given that we have shown in Figure 1 that the largest Lyapunov exponent stabilises 

(or even decreases, as for example in the case of Hénon and Lorenz attractors) when 
increasing the sample size in a deterministic process, but it increases with the sample size in a 
stochastic process, we propose using max iλ (T )  to test for the stability of the largest 
Lyapunov exponent. This non-increasing property of largest Lyapunov exponent with the 
sample size for chaotic processes may be tested recalling the traditional econometric test of 
linear independence between the bootstrap aggregation of the 100 largest Lyapunov 
exponents max iλ (T ) , in every sample size, and the sample size T. To that end, we have 
performed a linear regression of 

 
= + + = =max 0 1 T 1 rλ (T ) α α T ε for T T , , T N… ,   (3) 

so that the estimated parameter 1α̂  can be used to test if the largest Lyapunov exponent does 
not increase with sample size, implying an underlying deterministic process.   

 
The null hypothesis H0 and the alternative hypothesis H1 are formulated as follows:  

H0 : 01 ≤α  (deterministic process) 
H1 : 01 >α  (stochastic process) 

 
Observe that the alternative hypothesis of this test is closely associated with the 

estimation of maxλ  through a direct method like Rosenstein’s, where pure random processes 
have positive largest Lyapunov exponents (infinite in theory). Notice also that in order to 
implement this statistical test it is convenient to use the estimate of the asymptotic variance-
covariance matrix of 0α  and 1α  proposed by Newey and West (1987) that is robust with 
respect to both heteroskedasticity and autocorrelation for the OLS estimations. 

 
Finally, observe that under the null of a constant dependent variable and no stationary 

explanatory variables, the distribution of the implied test statistic has to be worked out and 
small sample properties need to be studied. So, in order to outperform the critical values of 
our test we have simulated 250 replications of the linear regression (3) under the null, 
obtaining an empirical distribution of the statistic 11 / sα , where  is the standard deviation 
of 

1s

1α  in every simulation. The main problem in this Monte Carlo simulation is that we have 
more than one process in the null hypothesis of deterministic chaos; in simulating (3) the null 
would be represented by a huge amount of processes like Feigenbaum´s, Hénon´s, Lorenz ´s 
etc. So we have simulated in (3) a combination of the most well known possibilities for the 
null hypothesis that is 250 replications of every one of Feigenbaum, Hénon and Lorenz 



processes and the critical values have been taken from that composed empirical distribution. 
The critical values of the empirical distribution of the statistics 11 / sα  are displayed in Table 1 
for different block sizes. The striking critical values corresponding to block size 2 and sample 
size equal to 2000 are not surprising because of the three dimensional nature of Lorenz´s 
attractor for which dynamics in two dimensions is poorly represented. In order to provide 
comparisons, in the last row of Table 1 we also give the critical values of the t-Student 
distribution.  

380
280

10

5

=
=

T
T

, 51 =T

[Table 1] 
 
 

5. Applications 
 
In this section we provide the applications of our test in two different sceneries. 
 
On the one hand we have tested for deterministic chaos with the stochastic data of the 

single blind controlled competition available in Barnett et al. (1997) and for the most 
representative chaotic processes like Feigenbaum´s, Hénon´s and Lorenz´s. On the other hand 
we have tested for chaos in several exchange rate time series. 

 
5.1   The power of the test against the most popular non-linear models 

 
In order to demonstrate the power of our test compared to the most popular non-linear 

models, we tested for chaos using the simulated data from the seven models presented in the 
previous section. In all cases, the largest Lyapunov exponents were estimated using the 
algorithm proposed in Rosenstein et al. (1993). 

 
Following Barnett et al. (1997), we compute our tests twice: for small samples of 380 

observations and for large samples of 2000 observations.  
 
For the 380 observations case, the sub-sample sizes are as follows: 

.,360,340,320,300
,,260,240,220,200

9876

4321

====
====

TTTT
TTTT

 

 
For the 2000 observations case, the sub-sample sizes are as follows: 

.20001980....,,1040,1020,1000 50321 ==== TTTT  
 
The key parameters in Rosenstein et al.’s algorithm have been selected, both for 

deterministic and stochastic processes, following the author’s recommendations, as follows:  
 

• The embedding dimension, which coincides with the moving-block length d, 
has been selected between two and six.  

• The lag or reconstruction delay has been fixed to one in all cases. In the case of 
Lorenz’s series, this is due to an a priori sampling lag of 10=τ  which has been 
used in order to avoid significant autocorrelations between data.    

• The mean period of the time series, which restricts nearest neighbours to 
having a temporal separation greater than the mean period, allows us to 
consider each pair of neighbours satisfying this constraint as being sufficiently 
close together given the initial conditions, for different trajectories. Following 



Rosenstein et al.’s recommendations and his program MTRCHAOS 1.0, we 
estimated the mean period as the reciprocal of the mean frequency of the 
power spectrum.  

 
On the other hand, consistently locating the region for extracting  without a priori 

knowledge of the correct slope in the linear region is a delicate question, as several authors 
have pointed out. After a short transition, there is a long linear region that is used to extract 
the largest Lyapunov exponent. Implementing our test, the number of discrete-time steps 
allowed for divergence between nearest neighbours has been set at 

maxλ

3=i . The location of the 
linear region to extract maxλ  proposed by Rosenstein et al. is necessarily visual and therefore 
difficult to reproduce in the bootstrapping framework. In this case our choice of the number of 
discrete-time steps allowed for divergence between nearest neighbours may produce a small 
bias in the estimation of  with respect to original Rosenstein et al.´s paper. Nevertheless, 
these biases do not appear to be very significant in the implementation of our test. 

maxλ

 
Tables 2 to 3 show the results of our regression testing for the stability of the mean 

largest Lyapunov exponent maxλ (T )  (for a sample of 100 largest Lyapunov exponents 
estimated by bootstrapping) when the sample size T increases. Table 2 corresponds to the 
small sample size of 380 observations and Table 3 to the large sample size of 2000 
observations. 

 
As can be seen, if the 1% marginal significance level is used, the test correctly 

distinguishes deterministic from random behaviour for sample sizes of 2000 observations 
(Table 3). The test also distinguishes correctly deterministic from random behaviour for 
sample sizes of  380 observations with the only exception of the ARMA process, for moving 
block size 5, and for NLMA, ARCH and ARMA processes, for moving block size 6, where 
the null is accepted incorrectly (Table 2).  

 
[ Table 2] and [Table 3] 

 
Therefore, our simulation results suggest that our test correctly rejects chaos for the 

GARCH, NLMA, ARCH and ARMA stochastic processes in large sample sizes and for all 
moving block lengths, presenting occasional problems for rejecting the null in several 
stochastic processes for small sample sizes. On the contrary, our test accepts chaos in the case 
of the well-known chaotic processes for moving-block lengths from 2 to 6 for both sample 
sizes of 380 and 2000.  

 
So our test works perfectly for large samples (2000 observations), although for small 

samples (380 observations) the test may present some imprecision. Bearing in mind the 
stochastic nature of the bootstrapping procedure used to estimate the mean of largest 
Lyapunov exponents maxλ (T )  which represents the basis of our test, it appears to be 
convenient to obtain the size and power of our statistical test, for both sample sizes, in the 
different models considered above. To that end, we have generated the quantity maxλ (T )  
one hundred times in order to repeat the test, observing the percentage of times that the null 
hypothesis is rejected when it is correct (deterministic processes), and the percentage of times 
that the null hypothesis is accepted when it is false (stochastic processes). The size and power 
of our test in the different models are shown in Table 4 for the sample size of 380, and Table 
5 for the sample size of 2000, for the nominal levels of significance of 90%, 95% and 99%. 



[Table 4] and [Table 5] 
 
As we can see in Table 4, with a sample size of 380, the power of our test against 

stochastic processes is near 1 for most of the stochastic models analysed, and for most moving 
block sizes, except for a few cases. There are only five exceptions: the NLMA model that 
fails on block sizes 4 and 6 for all levels; the ARCH model that fails on block size 6 for all 
levels, and the ARMA model that also fails on block sizes 5 and 6, for all levels. In order to 
construct Table 4 we have considered the first 380 observations of the available series.  

 
In Table 4 we have also estimated the size of our test for a sample size of 380. The 

results are diverse and depend on the process and the block size. The variability of these 
results depends on the complex null hypothesis that entails the “chaos” which has obliged us 
to resort to a mixture of sample distributions in order to work out an empirical statistical test 
under the null of a non-stationary explanatory variable.  

 
Table 5 shows the size and power of our test for the sample size of 2000. In this case 

our test emphatically rejects the stochastic processes and accepts adequately the chaotic 
processes with few exceptions. Also, the test would appear incorrectly sized in some cases 
due to the complex null hypothesis. 
 
5.2 Evidence of deterministic chaos on financial data 
 

In recent years several economic models have been developed, generating chaos in 
economic variables. Among many others we quote Grandmont (1985), who developed a 
model of a chaotic business cycle, and Brock and Hommes (1998) who provided a model with 
heterogeneous beliefs of agents that produces chaos in stock prices. Nevertheless, as Shintani 
and Linton (2003a) pointed out, looking for the empirical evidence of chaos in 
macroeconomic data is an elusive task because of the reduced sample sets available to the 
researchers. So, we concentrate our empirical research on financial time series, particularly on 
exchange rate series. 

 
Financial markets are highly complex feedback systems. A considerable number of 

studies have suggested that, due to heterogeneity in expectations, structural non-linear 
financial models produce chaotic dynamics. For example, DeGrauwe et al. (1993) develop a 
sticky-price monetary model showing how the interaction between chartists and 
fundamentalists is capable of generating chaotic behaviour in exchange rates. Da Silva (2000) 
generalises the results in a more sophisticated framework. On the other hand, Szpiro (1994) 
argues that an intervening central bank may induce chaos in exchange rates.  

 
There is substantial literature testing for non-linear dynamics and chaos on financial 

data due to the much greater amount of data available and to the superior quality of this data. 
Evidence of non-linearity on financial data is strong [see, for instance, Brock and Potter 
(1993) for a review]. Nevertheless, the evidence in favour of chaos is scant. Brock and Potter 
(1993) pointed out that the evidence consistent with chaos in studies such as Scheinkman and 
LeBaron (1989), Frank and Stengos (1988), Mayfield and Mizrach (1989), and others, may be 
produced by non-predictable, non-stationary or any other structure which is difficult to predict 
out of sample rather than chaos.  

 
On the other hand, it is well known in the financial literature that several proxy 

variables for volatility, such as the powers of absolute returns , 0.5,1,1.5, 2, 2.5tr
α α =  have 



significant positive serial correlation over long lags, although the returns themselves contain 
little serial correlation [see Taylor (1986) and Ding, Granger and Engle (1993)]      

 
We have tested for deterministic chaos in three exchange rate series corresponding to 

the German mark, the Canadian dollar and the French franc, all against the US dollar. All the 
series go from 4th January 1971 to 31st December 1998. 

 
With the critical values of the empirical distribution obtained in Table 1, we have tested 

for chaos in the logarithmic returns −= −t tr log( S ) log( S )t 1  for sample sizes of around 2000 
observations (  stands for the exchange rate on date t), and we also test for chaos in the 

powers of absolute returns 
tS

tr ,α α = 0.5,1,1.5, 2  . 
 
Table 6 shows the exchange rates, periods and block sizes where our test accepts the 

null of deterministic chaos. On the one hand, our results accept the null hypothesis of chaos in 
the returns of the French franc/US dollar and in the returns of the Canadian dollar/US dollar 
series from January 1971 to June 1981, for block size 2 in both cases. The results are not 
robust to the block size because the null is rejected for higher block sizes. On the other hand, 
we have also detected deterministic chaos for all powers of absolute returns for the French 
franc/US dollar and the Canadian dollar/US dollar, for block size 2, during the same period 
where the chaos was detected for the return series.  Again, the results are not robust to the 
block size. 

 
For the German mark/US dollar, no chaotic behaviour is detected, neither in the return 

series nor in the powers of absolute returns in any block size. 
 
According to Tables 4 and 5, where the power of our test against all stochastic 

processes is equal to one for block size 2, our results suggest some signs of deterministic 
chaos during the seventies. Nevertheless, these signs are weak because they are only detected 
for block size two.  

 
 

6.  Concluding remarks 
 
Empirical research on the detection of chaotic behaviour has expanded rapidly, but 

results on small sample sizes have tended to be rather inconclusive, due to the lack of 
appropriate testing methods. 

 
The problem of distinguishing chaotic from random behaviour is a very complex task 

limited by the number of observations available and the dimension of the chaotic attractor that 
generates the process. If the dimension of the attractor is large enough, the amount of data 
needed to test it may be prohibitive.  

 
The general practice has been to take the existence of a positive Lyapunov exponent as 

an indication that the system is chaotic. However, this condition is not sufficient for the 
detection of chaos, and does not help us to distinguish a chaotic process from stochastic one. 
Indeed, any standard direct algorithm for calculating the largest Lyapunov exponent will find 
a finite, positive value for this exponent, both for chaotic and stochastic processes. 

 



In this paper, we combine the bootstrap statistical framework for hypothesis testing 
using the computed Lyapunov exponents (Gençay, 1996), with the ergodic theory of 
deterministic dynamical systems in order to develop a new test to detect chaotic dynamics in 
time series. The new test is based on the stability of the mean of the distributions of the 
largest Lyapunov exponent estimated from different sample sizes, which is guaranteed by 
Oseledec's (1968) theorem. This theorem provides a strong feature of deterministic processes 
that is not shared by stochastic processes. We show that, while for stochastic processes (both 
linear and non-linear) the largest Lyapunov exponent increases with the sample size, for 
chaotic series the largest Lyapunov exponent is invariant when increasing the sample size. We 
compute the largest Lyapunov exponent using a robust version of the algorithm proposed by 
Rosenstein et al. (1993), considering the mean of divergences between pairs of neighbouring 
trajectories. 

 
We have applied this new test to the simulated data used in the single-blind controlled 

competition among tests for non-linearity and chaos generated  by Barnett et al. (1997), as 
well as several chaotic series, both for small and large samples (380 and 2000 observations, 
respectively). The results suggest that the new test has a high discriminatory power against 
interesting stochastic alternatives, both linear and non-linear (GARCH, NLMA, ARCH and 
ARMA). 

 
Finally we have tested for deterministic chaos in three exchange rate series 

corresponding to the German mark, the Canadian dollar and the French franc, all against the 
US dollar. All the series go from 4 January 4 1971 to 31 December 1998. Signs of 
deterministic chaos have been detected for the returns and for all powers of absolute returns 
for the French franc/US dollar and the Canadian dollar/US dollar during the seventies. In 
contrast, no chaotic behaviour has been detected in any part of the sample for the the German 
mark/US dollar. 

 
Signs found of chaotic dynamics could be associated with the long term fluctuations of 

the US dollar exchange rate during the seventies and eighties (see, e.g. Krugman, 1988). 
There are several reasons for these long term fluctuations such as irrational speculations 
(Westerhoff, 2003), heterogeneity of traders’ expectations of a future currency exchange rate 
development (DeGrauwe et al., 1993), exchange-rate intervention (Szpiro, 1994), 
expectations relating to future monetary policy (Federici and Santoro, 2001), as well as real 
economic shocks. Indeed, the period analysed presents several monetary changes of 
international impact that could lead to long term fluctuations in currency exchange rates.  

 
Therefore, the results presented in this paper suggest that our test constitutes a 

contribution to the in-depth discussion existing in the literature. We provide an additional test 
for detecting low dimensional chaos that has the ability to distinguish between deterministic 
or stochastic processes, and proves to be very powerful when compared to different stochastic 
alternatives (both linear and non-linear) for both large and small sample sizes. 
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Table 1: Critical values for the empirical distribution of 11 / sα  under the null of deterministic process 1 0≤α  for the linear regression (1). 

max 0 1 T 1 rλ (T ) α α T ε for T T , , T N= + + = =…   

Sample size T=380  T=2000 

 q(90%)      q(95%) q(99%) q(90%) q(95%) q(99%)

Block size=2       2.98485 3.19223 3.49616 6.03901 6.23596 6.54680

Block size=3       3.13403 3.57614 4.12994 -1.21598 -1.08813 -0.81998

Block size=4       1.75335 1.99139 2.54167 -3.71855 -3.24156 -2.44491

Block size=5       3.45828 3.70437 4.22816 -4.15120 -3.59367 -2.84705

Block size=6       7.36799 8.05090 9.96781 -0.67852 -0.51258 -0.20904

Critical t-values       1.3968 1.8595 2.8965 1.2996 1.6776 2.4077

Notes:  
(1) The critical values of the statistic test for 1α  under the null of a constant dependent variable and a non-stationary explanatory 

variable, have been worked out studying the small sample properties. 
 

 
 



 
 

Table 2: Test for the stability of the largest Lyapunov exponents for stochastic and chaotic processes. 

Sample size=380 GARCH NLMA ARCH     ARMA Feigenbaum Hénon Lorenz

Coefficients of linear 
regression 

1α̂  1α̂  1α̂  1α̂  1α̂  1α̂  1α̂  

Block size=2 0.00056 
(23.62802a) 

0.00054 
(5.51635a) 

0.00048 
(20.62628a) 

0.00074 
(6.28863a) 

0.00001 
(0.50218) 

0.00003 
(1.63292) 

0.00018  
(2.61055) 

Block size=3 0.00043  
(10.71145a) 

0.00026  
(5.22415a) 

0.00035  
(7.38378a) 

0.00054  
(5.73568a) 

0.00002  
(0.39311) 

-0.00004 
(-1.17766) 

0.00011 
(1.64782) 

Block size=4 0.00035  
(9.22046a) 

0.00004  
(2.75127a) 

0.00037 
(6.96621a) 

0.00023 
(3.07224a) 

0.00003  
(1.02935) 

0.00004 
(0.98808) 

0.00005 
(0.69311) 

Block size=5 0.00038  
(8.27279a) 

0.00016  
(8.63505a) 

0.00026 
(5.64994a) 

0.00023 
(3.79438) 

0.00021  
(2.75057) 

-0.00001 
(-0.17596) 

0.00008 
(1.27820) 

Block size=6 0.00024  
(13.45544a) 

0.00018 
(6.73369) 

0.00019 
(9.03211) 

0.00020 
(4.62910) 

0.00037  
(5.00552) 

-0.00003  
(-0.74018) 

0.00015 
(3.55523) 

Notes:    
(1) OLS estimation of  the linear regression max 0 1 Tλ (T ) α α T ε= + +  with t-ratio in brackets. 
(2) a denotes rejection of the null hypothesis H0 : 1 0≤α  (deterministic process) at the 1% level, following critical values in Table 1. 
 

 
 



 
 

Table 3: Test for the stability of the largest Lyapunov exponents for stochastic and chaotic processes. 

Sample size=2000 GARCH NLMA ARCH     ARMA Feigenbaum Hénon Lorenz

Coefficients of linear 
regression 

1α̂  1α̂  1α̂  1α̂  1α̂  1α̂  1α̂  

Block size=2 0.00009 
(13.20015a) 

0.00009 
(29.46069a) 

0.00008 
(32.82068a) 

0.00009 
(27.21705a) 

-0.00001 
(-5.95412) 

-0.00001 
(-9.49223) 

0.00001 
(6.08057) 

Block size=3 0.00008  
(23.45342a) 

0.00008  
(47.99761a) 

0.00006 
(19.62940a) 

0.00006 
(27.24370a) 

-0.00001 
 (-5.77040) 

-0.00001 
(-4.46646) 

-0.00000 
(-1.06341) 

Block size=4 0.00005  
(19.20440a) 

0.00005  
(36.26796a) 

0.00005 
(20.18802a) 

0.00004 
(22.57941a) 

-0.00000  
(-3.25196) 

-0.00001 
(-5.33878) 

-0.00001 
(-11.34195) 

Block size=5 0.00003  
(10.79934a) 

0.00004  
(13.31915a) 

0.00003 
(20.62653a) 

0.00002 
(12.79781a) 

-0.00000  
 (-3.79818) 

-0.00001 
(-6.7262) 

-0.00001 
(-6.48720) 

Block size=6 0.00002 
(18.13112a) 

0.00032  
(13.19118a) 

0.00000 
(24.22810a) 

0.00002 
(13.30009a) 

-0.00000  
(-2.30516) 

-0.00001 
(-0.67674) 

-0.00001 
(-2.90258) 

Notes: 
(1) OLS estimation of  the linear regression max 0 1 Tλ (T ) α α T ε= + +  with t-ratio in brackets. 
(2) a denotes rejection of the null hypothesis H0 : 1 0≤α  (deterministic process) at the 1% level, following critical values in Table 1. 
  

 
 



Table 4: Size and power of largest Lyapunov exponent test:  sample size = 380 

Level Block
size=2 

Block 
size=3 

Block 
size=4 

Block 
size=5 

Block 
size=6 

 
90%      1.00000 1.00000 1.00000 1.00000 0.98400

00000 1.00000 1.00000 1.00000 0.92800
GARCH 

( )0 1 0reject H α >Pr
99%      1.00000 1.00000 1.00000 1.00000 0.66400

90%      1.00000 1.00000 0.55200 0.99600 0.03200
00000 1.00000 0.40400 0.99200 0.01200

NLMA 
( )0 1 0reject H α >Pr

99%      1.00000 1.00000 0.19600 0.92400 0.00000
 

90%      1.00000 1.00000 1.00000 1.00000 0.60000
00000 1.00000 1.00000 1.00000 0.40800

ARCH 
( )0 1 0reject H α >Pr

99%      1.00000 1.00000 1.00000 0.99200 0.13200
 

90%      1.00000 1.00000 1.00000 0.41600 0.00000
00000 1.00000 0.99600 0.12400 0.00000

ARMA 
( )0 1 0reject H α >Pr

99%      1.00000 1.00000 0.72000 0.01200 0.00000
 

90%      1.00000 0.98400 0.72000 0.72800 0.80800
0000 0.99200 0.85600 0.86800 0.93600

Feigenbaum 
( )0 1 0accept HPr ≤α

 99%      1.00000 1.00000 0.97200 0.97600 1.00000
 

90%      1.00000 1.00000 0.98400 1.00000 1.00000
0000 1.00000 0.99600 1.00000 1.00000

Hénon 
( )0 1 0accept HPr ≤α

 99%      1.00000 1.00000 1.00000 1.00000 1.00000
 

90%      0.70400 0.72000 1.00000 0.97600 0.89600
5200 0.86000 1.00000 0.98400 0.91600

Lorenz 
( )0 1 0accept HPr ≤α

 99%      0.97200 0.97200 1.00000 0.99600 0.97200

  

95% 1.      

       

95% 1.      

95% 1.      

95% 1.      

95% 1.0      

95% 1.0      

95% 0.8      
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Table 5: Size and power of largest Lyapunov exponent test:  sample size = 2000 

Level Block
size=2 

Block 
size=3 

Block 
size=4 

Block 
size=5 

Block 
size=6 

 
90%      1.00000 1.00000 1.00000 1.00000 1.00000

00000 1.00000 1.00000 1.00000 1.00000
GARCH 

( )0 1 0reject H α >Pr
99%      1.00000 1.00000 1.00000 1.00000 1.00000

90%      1.00000 1.00000 1.00000 1.00000 1.00000
00000 1.00000 1.00000 1.00000 1.00000

NLMA 
( )0 1 0reject H α >Pr

99%      1.00000 1.00000 1.00000 1.00000 1.00000
 

90%      1.00000 1.00000 1.00000 1.00000 1.00000
00000 1.00000 1.00000 1.00000 1.00000

ARCH 
( )0 1 0reject H α >Pr

99%      1.00000 1.00000 1.00000 1.00000 1.00000
 

90%      1.00000 1.00000 1.00000 1.00000 1.00000
00000 1.00000 1.00000 1.00000 1.00000

ARMA 
( )0 1 0reject H α >Pr

99%      1.00000 1.00000 1.00000 1.00000 1.00000
 

90%      1.00000 1.00000 0.70400 0.70400 1.00000
0000 1.00000 0.85200 0.85200 1.00000

Feigenbaum 
( )0 1 0accept HPr ≤α

 99%      1.00000 1.00000 0.97200 0.97200 1.00000
 

90%      1.00000 1.00000 1.00000 1.00000 0.70400
0000 1.00000 1.00000 1.00000 0.85200

Hénon 
( )0 1 0accept HPr ≤α

 99%      1.00000 1.00000 1.00000 1.00000 0.97200
 

90%      0.70400 0.70400 1.00000 1.00000 1.00000
5200 0.85200 1.00000 1.00000 1.00000

Lorenz 
( )0 1 0accept HPr ≤α

 99%      0.97200 0.97200 1.00000 1.00000 1.00000

  

95% 1.      

       

95% 1.      

95% 1.      

95% 1.      

95% 1.0      

95% 1.0      

95% 0.8      
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Table 6: Critical values for the empirical distribution of 11 / sα  under the null of deterministic process 1 0≤α  for the linear regression (1). 

max 0 1 T 1 rλ (T ) α α T ε for T T , , T N= + + = =…   

Sample size T=2000 

Block size=2 French-franc / USA-dollar 
From Jun 1973 to Jun 1981  

 Canadian-dollar / USA-dollar 
From Jun 1973 to Jun 1981 

Returns:  tr -0.000000567392 
(-0.442773087510) 

-0.000028974074 
(-9.405226641112) 

0.5
tr  -0.000044848704 

(-18.652187697785) 
-0.000100484602 

(-14.257695051415 ) 

tr  -0.000032639356 
(-12.131668952056) 

-0.000079231957 
(-11.146644164362) 

1.5
tr  -0.000022395489 

(-7.115107295481) 
-0.000059246297 

(-13.40553594015) 
2

tr  0.000005474017 
(1.735723588500) 

-0.000044532138 
(-11.193154865891) 

Notes: 
(1) OLS estimation of  the linear regression max 0 1 Tλ (T ) α α T ε= + +  with t-ratio in brackets. 
(2) a denotes rejection of the null hypothesis H0 : 1 0≤α  (deterministic process) at the 1% level, following critical values in Table 1. 

 
 

 26 



 

Figure 1 
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